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The paper by Vul et al., entitled "Voodoo correlations in social neuroscience" and 
accepted for publication by Perspectives on Psychological Science, claims that "a 
disturbingly large, and quite prominent, segment of social neuroscience research is 
using seriously defective research methods and producing a profusion of numbers that 
should not be believed."  
 
The paper has one valid point: if investigators select voxels in the brain based on a 
particular statistical test and then apply a secondary non-independent test to those 
data, the resulting inference is biased.  A major problem is, however that they flag a 
set of studies as "problematic" without discriminating when non-independence errors 
were committed and when not.  Some criticised papers first determined voxels 
responding to a particular experimental condition and then reporting the correlation of 
their activity with an independent behavioural scale.  Also, merely reporting the 
correlation coefficients as effect sizes for significant findings does not constitute a 
secondary non-independent test either (see point 1 below). 
 
Furthermore, the paper by Vul et al. uses statistical arguments that are partially flawed 
and misleadingly implies that social neuroscience studies rest entirely on the sort of 
brain-behaviour correlations that are criticised.  Below, we summarize these problems 
in all brevity. A detailed analysis will be submitted to a peer reviewed scientific 
journal shortly. 
 
1. The authors misunderstand the critical role of multiple comparison 
corrections and conflate issues pertaining to null hypothesis testing and effect 
size estimates, respectively. 
 
Vul et al. argue that it is misleading to identify, in a first step, voxels showing a 
significant correlation between brain activity and a psychological variable and, in a 
second step, to report the magnitude of this correlation.  Although they are aware that 
the statistical test underlying the selection procedure is typically combined with a 
correction for multiple comparisons they misunderstand the consequences of this fact.  
Correcting for multiple comparisons ensures that the correlations exhibited by the 
selected voxels do not exceed a certain probability of having occurred by chance.  
Making this correction increasingly strict has two consequences: (i) significant 
correlations will be found more and more rarely, but at the same time, (ii) their 



magnitude will increase.  This follows directly from the principles of statistical 
hypothesis testing, there is nothing magic or surprising about this effect.  Once the 
significance of a correlation has been determined, one can illustrate the effect size by 
reporting the magnitude of the correlation coefficient, graphically or numerically.  
This combined reporting of significance (p-values) and effect sizes (e.g. correlation 
coefficients) is in accordance with the statistical guidelines of the American 
Psychological Association (Wilkinson et al. 1999). 
  
 
2. The authors make strong claims on the basis of a questionable upper bound 
argument. 
 
Vul et al. argue that many of the brain-behavior correlations published in social 
neuroscience articles are "impossibly high" and that "the highest possible meaningful 
correlation that could be obtained would be .74".  This categorical claim is based on a 
statistical upper bound argument which relies on the questionable assumption that 
"fMRI measures will not often have reliabilities greater than about .7".  However, 
logically, any theoretical upper bound argument would have to be based on the 
highest reliability values ever reported for behavioural and fMRI data, respectively 
(e.g. for fMRI, near-perfect reliabilities of 0.98 have been reported in Fernandez et al. 
2003).  
 
 
3. The authors use misleading simulations to support their claims. 
 
Both simulations provided by Vul et al. are misleading.  For brevity, we here 
comment only on technical flaws of their first simulation.  Had this simulation been 
implemented properly, using family wise error correction at a significance level of 
5%, maximally every 20th simulation would have resulted in a single voxel (of the 
10,000 tested) which would have falsely been deemed significant. Of course, such a 
single voxel is still a false positive and would correspond to an impressive correlation, 
but it would occur extremely rarely.  In contrast, Vul et al. convey the impression that 
"preselecting" voxels by statistical testing will generally result in many false positive 
voxels.  
 
 
4. The authors inappropriately dismiss the existence of non-significant 
correlations. 
 
As the authors admit, their criticism necessarily implies that the criticised studies 
should not find any non-significant correlations.  They dismiss the fact that non-
significant correlations have indeed been reported frequently by examining a single 
case in which the appearance of non-significant correlations can be explained in a 
way that does not contradict their account.  However, several of the criticised studies 
– including our own ones – and several studies not reviewed in the present paper 
reported non-significant correlations that cannot be dismissed in this fashion.  In these 
studies, the same indices of brain activation were used to perform fully independent 
regression analyses with different behavioural sub-scales, but only some of the sub-
scales revealed significant results (e.g. Jabbi et al., 2007).   
 



 
5. The authors' understanding of the rationale behind the use and interpretation 
of correlations in social neuroscience is incomplete. 
 
In contrast to the interpretation by Vul et al., a key question in social neuroscience is 
often not how strongly two measures were correlated, but whether and where in the 
brain such correlations may exist. In the Jabbi et al. (2007) paper, for example, results 
did not only confirm that brain activity during the vision of other’s facial expressions 
correlated with empathy questionnaires even after applying appropriate corrections 
for multiple comparisons, but also that such correlations arise in the very same 
regions involved in the participants’ own experience of similar emotions, providing 
important evidence for simulation theories. This finding stands independently of the 
absolute magnitude of such correlations and is just one example of many studies in 
which the where and whether of correlations are what carries the decisive 
information.  
 
 
6. The authors ignore that the same brain-behaviour correlations have been 
replicated by several independent studies and that major results in social 
neuroscience are not based on correlations at all  
 
The authors suggest that major work in social neuroscience has been published in 
high-impact journals only because of the reported size of brain-behaviour 
correlations. This claim is not true. First, many studies based their main results on 
other analyses than correlation analyses (e.g. Singer et al. 2004, 2006) and these main 
findings, for example in the domain of empathic brain responses, were subsequently 
replicated many times by different groups across the world (e.g., Gu & Hahn 2007; 
Jackson et al. 2005, 2006; Lamm et al. 2007a, 2007b; Saarela et al. 2007; for a review 
see Singer and Leiberg, 2009). Moreover, correlations between these empathy-
relevant brain areas and individual difference measures have now been reported in a 
large number of studies using different methods including parametric regression 
analysis in single-subject analyses (e.g., Jackson et al. 2006; Lamm et al. 2007a; 
Saarela et al. 2007; Singer et al. 2008).  These multiple replications, using different 
methods, mean that it is very unlikely that the reported results are merely false 
positives and demonstrate that many of the results obtained by social neuroscience 
have already passed the most stringent test in science: replication by independent 
studies.   
 
 
7. The authors used an ambiguous and incomplete questionnaire. 
 
As basis for their survey, the authors sent a questionnaire to a selective set of 
scientists. This questionnaire contained questions that were ambiguous and 
incomplete. The authors neither asked which correction method was employed nor 
whether a secondary statistical test was actually really applied to the data of the 
significant voxels. This is important because, as explained above, there is no problem 
per se in reporting correlation coefficients as effect sizes of significant results, as long 
as these significant results survived multiple comparison correction and if no 
dependent secondary statistical tests were applied to the selected voxels (in some 
studies this may have been unclear due to the complexity of the description of data 



analysis). We suspect that due to the ambiguous and incomplete questionnaire 
multiple studies may have been misclassified by the authors as "invalid". 
 
 
8. The authors make flawed suggestions for data analysis. 
 
The authors advocate the use of "independent" data and suggest that data from the 
same subject could be split up in half where "half of the data are used to select a 
subset of voxels exhibiting the correlation of interest, and the other half of the data are 
used to measure the effect (examining the same voxels, but looking at different runs 
of the scanner)."  This suggestion is flawed since it is common knowledge in statistics 
that repeated measures from the same subject are never independent; the activity in a 
given voxel during the first half of the data will be correlated with its activity during 
the second half of the data. It is this well-known phenomenon that led to the 
development of covariance component models, e.g. repeated measures ANOVA, in 
statistics in order to deal with multiple measurements from the same subject. 
 
 
Conclusions 
 
In this summary, we have provided a very brief summary that exposes some of the 
flaws that undermine the criticisms by Vul et al.  We have pointed out that brain-
behaviour correlations in social neuroscience are valid, provided that one adheres to 
good statistical practice.  It has also been emphasized that many analyses and findings 
in social neuroscience do not rest on brain-behaviour correlations and have been 
replicated several times by independent studies conducted by different laboratories.  
A full analysis of the Vul et al. paper and a detailed reply will be submitted to a peer-
reviewed scientific journal shortly. 
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