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The brain is the body’s largest energy consumer, even in the ab-
sence of demanding tasks. Electrophysiologists report on-going
neuronal firing during stimulation or task in regions beyond those
of primary relationship to the perturbation. Although the biolog-
ical origin of consciousness remains elusive, it is argued that it
emerges from complex, continuous whole-brain neuronal collabo-
ration. Despite converging evidence suggesting the whole brain is
continuously working and adapting to anticipate and actuate in
response to the environment, over the last 20 y, task-based func-
tional MRI (fMRI) have emphasized a localizationist view of brain
function, with fMRI showing only a handful of activated regions in
response to task/stimulation. Here, we challenge that view with
evidence that under optimal noise conditions, fMRI activations
extend well beyond areas of primary relationship to the task;
and blood-oxygen level-dependent signal changes correlated with
task-timing appear in over 95% of the brain for a simple visual
stimulation plus attention control task. Moreover, we show that
response shape varies substantially across regions, and that
whole-brain parcellations based on those differences produce dis-
tributed clusters that are anatomically and functionally meaning-
ful, symmetrical across hemispheres, and reproducible across
subjects. These findings highlight the exquisite detail lying in fMRI
signals beyond what is normally examined, and emphasize both
the pervasiveness of false negatives, and how the sparseness of
fMRI maps is not a result of localized brain function, but a conse-
quence of high noise and overly strict predictive response models.
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For years, positive gamma-like responses were the primary type
of blood-oxygen level-dependent (BOLD) response that

researchers used as indirect markers of neuronal activity. Other
methods for extracting neural information from BOLD time se-
ries are increasingly popular today. Spontaneous fluctuations
recorded in the absence of a controlled stimulus have rapidly
gained attention and shown great potential in the study of normal
(1, 2) and abnormal brain function (3, 4). Multivariate methods
have demonstrated that detailed information about stimulus in-
put can be obtained by jointly analyzing activity in voxels that
show no significance using conventional univariate analysis tech-
niques. Even within the framework of univariate analysis, con-
sideration of BOLD responses other than conventional positively
sustained responses, such as negatively correlated or stimulus
onset/offset responses, has proven useful at differentiating audi-
tory or visual stimuli within primary sensory cortices (5, 6).
Despite all such evidence highlighting the exquisite sensitivity

of the BOLD contrast to underlying brain function, few block-
design task-based functional MRI (fMRI) studies examine
temporal responses other than the conventional positively sus-
tained gamma-like response or conduct secondary analysis on
areas of no statistical significance. Factors contributing to this
practice may include the lack of desire to look at temporal dy-
namics once a region is labeled statistically significant, or the fact
that conventional responses have proven sufficient to uncover

the neuronal correlates of a myriad of human behaviors.
Unfortunately, if, as the previous discussion suggests, true neu-
ronal responses are continuously passing undetected in fMRI,
our conceptualizations of brain function based on task-based
fMRI research might be incomplete.
As Lieberman and Cunningham stated previously (7), a long-

standing preoccupation with the reduction of false-positives in
fMRI creates a bias toward reporting only large and obvious
effects, neglecting what perhaps represents more subtle complex
cognitive and affective processes. Here, we explore this hypoth-
esis in detail and evaluate whether the sparseness of task-based
fMRI activation maps is real or a consequence of noise levels and
modeling decisions. We approach this question using low-noise
fMRI time-series generated by combining unconventionally large
amounts of data (100 runs per subject). With these data, we also
evaluate how regional differences in BOLD response may reveal
how distant regions collaborate during a particular task.

What Is the True Extent of BOLD Activations? Previous research has
shown that if fMRI noise is reduced by time-series averaging,
activation area significantly increases with number of averaged
runs (8, 9). Fast increases in activation area during initial aver-
aging stages were followed by a progressive decrease in the rate
of area growth with averaging. Still, no asymptotic behavior was
reported. Moreover, voxels with subtle hemodynamic responses
not strong enough to attain significance with fewer trials showed
no significant differences in hemodynamic delay from voxels that
were significantly active with fewer trials (8). This finding implies
that increases in activation area could not be accounted for as
being the result of unaccounted-for hemodynamic delay differ-
ences (i.e., large vessels). Similarly, the use of more versatile
response models (10) or modeling of additional hemodynamic
response shapes (e.g., negatively correlated or stimulus onset/
offset responses) have been reported to also increase activation
area (5, 6) and account for additional variability (11).
Understanding how noise levels and choice of a predictive

BOLD-response model influences fMRI activation maps is
a necessary step toward comprehending how much procedural
decisions shape fMRI results and obscure the “true” amount of
neuronal resources recruited by an experimental perturbation. In
other words, when subjects perform a task, is only a reduced set
of isolated regions actively recruited? Or, does the majority of the
brain show BOLD signal modulation consistent with task timing
but pass undetected? To answer these questions we acquired
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a total of 100 functional runs (i.e., 500 trials) in each of three
subjects as they were engaged on a visual stimulation plus letter/
number discrimination task. A block paradigm with alternating
active (20 s) and resting (40 s) epochs was used (SI Methods). We
first calculated a single average time-series per subject using all
100 available runs. Averaging reduced noise floor by a factor of
six and allowed observation of a variety of BOLD responses time-
locked with the task across the whole brain. To evaluate effects
on activation extent, we subsequently computed activation maps
using incremental amounts of data (Nruns), where Nruns was var-
ied between 1 and 100. To minimize any bias, we used multiple
run permutations at each Nruns level, and computed maps of
significant activation (PBonf < 0.05 and PFDR < 0.05) using three
different models (Fig. 1):

(i) a sustained response model (SUS) consisting of the con-
volution of a gamma-variate function with a boxcar func-
tion that follows the experimental paradigm;

(ii) an onset+sustained+offset model (OSO) that includes
transitory responses at blocks onset/offsets in addition
to the sustained response (6); and

(iii ) an unconstrained model (UNC) consisting of 30 impulse
functions spanning the duration of a single on/off cycle (60
s) and therefore setting no a priori constraints on response
shape other than agreement with task periodicity.

These models were selected because of their increasing flexi-
bility in fitting hemodynamic responses of variable shape. It is
not the purpose of this work to extensively evaluate the perfor-
mance of predictive-response models, but to see how additional
flexibility affects activation maps. For detailed model compar-
isons and other models, please refer to refs. 10, 11, 13, and 14.
Data indicate that activation area varies substantially with

Nruns and response model, raising important questions about
how to interpret fMRI activation maps or the meaningfulness of
statistical thresholds.

Do Regional Differences in BOLD Response Hold Information About
Brain Function? Hemodynamic responses vary across subjects and
regions (15, 16). This variability has been attributed in part to
differences in underlying neuronal processing roles (17). Estima-
tion of the time course of the BOLD response associated with
short-duration activity is common, and interregional differences in
its temporal characteristics are often presented as evidence to
postulate putative differences in the role that such regions play
with respect to the task (18–20). Conversely, the temporal char-
acteristics of responses to sustained stimuli are not typically ex-
plored in detail. In fact, some have claimed that transients at
stimuli onset/offset have no neuronal origin and can be explained
simply in hemodynamic (21) or even nonphysiological terms:
namely, step transitions in the magnetic field itself (22). However,
recent studies have started to challenge this view (5, 6, 17, 23–25).
Consideration of transient responses at sustained stimuli onset/
offset, as well as different types of modulations (e.g., ramp, initial
overshoot, and so forth) while the stimuli is present, has allowed
researchers to separate responses to different stimuli type in the
visual (6, 17) and auditory cortex (5, 23). Similarly, topographical
dissociation between sustained and transient responses has been
reported for a variety of tasks, with transient responses corre-
sponding primarily to attention/task switching regions (24, 25).

Finally, differences in transient responses between normal and
clinical populations have also been reported (26). All this evidence
suggests that considering a diversity of BOLD responses might
help us group regions according to their relationship to the task.
To test this hypothesis, we input impulse responses computed

for each subject using all 100 available runs to two different
clustering algorithms (k-means and hierarchical clustering) that
pose zero constraints on the spatial distribution of clusters.
Anatomically and functionally meaningful parcellations resulted,
strongly suggesting that these regions, although not showing the
classic positively sustained response to the stimulus/task, are, in
fact, activated.

Results
Behavioral Results. Average correct responses per run were
above 95% for all subjects (Subject 1: 95.65 ± 4.06%; Subject
2: 98.12 ± 3.12%; Subject 3: 97.15 ± 3.78%), implying that
subjects were compliant with the task for the entire duration of
these experiments.

fMRI Activation Extent. Within-subject averaging reduced random
noise but kept signal levels (nonrandom signal components) un-
affected. Statistically significant signal changes (sometimes as low
as less than 0.2%) time-locked with the task could be observed in
almost every location of the brain (Fig. 2) when 100 runs were
averaged. Response shape and magnitude varied significantly
across regions. Some regions responded in a sustained positive
manner for the whole duration of the task epochs (e.g., occipital,
insular and left motor cortex), but others responded more
prominently during task-switching periods (e.g., occipito-parietal
junction). Additionally, many regions responded with negative
deflections during active epochs (e.g., some parietal locations,
right motor cortex). It is important to notice that even within
regions that responded similarly (e.g., sustained), there are subtle
differences in onset, offset, and steady-state shape. For example,
although both the primary visual cortex (6 and 12 in Fig. 2) and
the anterior insula (2 and 8 in Fig. 2) showed a clear sustained
response for the whole duration of the active epochs, the response
in the visual cortex was smoother and lacked the series of peaks
and valleys clearly observable for the anterior insular region.
The extent of activations increased significantly with number

of runs (Nruns) inputted to the analysis and relaxation of pre-
dictive BOLD response model constraints. Fig. 3 shows how
activation extent rapidly increased with initial increases in
number of runs (1 < Nruns < 20). For larger Nruns, activation
extent kept increasing at a lower rate. For all subjects, signifi-
cantly active voxels at Nruns = 100 represent on average over
71% of the imaged brain for the SUS model; and over 89% for
the other two models at PFDR < 0.05 (see Table S1 for results at
different thresholds). Conversely, for Nruns = 5, which represents
a typical number of runs per condition in fMRI experimentation,
activated voxels represented ∼20% of the imaged volume at
PFDR < 0.05 for the SUS analysis and between 35 and 44% for
the other two analyses (Fig. 3 and Table S1).

Functional Parcellations of the Brain in Action. Voxels with similar
response profiles were spatially clustered using both k-means and
hierarchical clustering on the voxel-wise BOLD responses calcu-
lated using all 100 runs per subject. Parcellations were computed
only for cortical and subcortical gray-matter voxels, excluding the
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Fig. 1. Response models. Graphs span a single cycle (60 s) of the task. Active epochs (0–20 s) marked in cyan.
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cerebellum. Parcellations were created for different clustering
levels (k) ranging from k = 2 to k = 70 (see SI Methodsfor details).
Fig. 4 shows the k-means decomposition for subject 3 and k=20

(Fig. S1 shows equivalent results for hierarchical clustering). In
both cases, the resulting topography is symmetrical across hemi-
spheres, anatomically meaningful, and reproducible across sub-
jects (see Figs. S2–S4 for k-means results for all subjects, and
Figs. S5–S7 for hierarchical clustering). Hemispheric symmetry is
evident in the occipital cortex, superior temporal cortex, anterior
insula, hippocampus, and in subcortical structures, such as the
thalamus and the putamen. Moreover, clusters resemble well-
known principles about the functional organization of the brain.
Primary visual and primary hand motor cortices correspond to
different clusters (see axial slices 21S and 49S in Fig. 4 and Fig. S1).
The visual cortex is segmented into several regions both in the
anterior-posterior (A-P) and medial-lateral (M-L) directions. For
example, in theM-L direction V1 and V5 are segregated (see axial
slice 1S in Fig. 4 and Fig. S1). In the A-P direction, V1 and higher
visual processing areas closer to the parieto-occipital junction are
also part of different clusters (see axial slice 9S in Fig. 4 and
Fig. S1). In most cases, clusters did not appear in the form of
a single contiguous agglomeration of voxels but as distributed sets

of nodes. Grouping patterns go beyond hemispheric symmetry,
and in some cases resemble connectivity patterns similar to those
present in resting-state data. For example, CL03 in Fig. 4 (CL04 in
Fig. S1) resembles a motor control network with nodes in the left
primary motor hand cortex, medial supplementary motor cortex,
and postero-lateral thalamus. Another example is cluster CL02 in
Fig. 4 (CL05 in Fig. S1), with nodes in the bilateral infero-lateral
parietal cortex, posterior cingulate, and ventro-medial frontal
cortex, which resembles the default-mode network. Finally, Fig.
4C and Fig. S1C shows cluster-averaged responses. All clusters
display responses time-locked with the experimental paradigm.
Some clusters show positively correlated sustained responses (e.g.,
CL03, CL04 andCL06 in Fig. 4); others shownegatively correlated
sustained responses (e.g., CL01, CL02, and CL05 in Fig. 4); still
others seem to respond primarily at transitions (e.g., CL09, CL11,
and CL16 in Fig. 4). The average cophenetic correlation distance
(CCPC) associated with the hierarchical clusters was 0.81
(CCPCSubj1 = 0.85; CCPCSubj2 = 0.84; CCPCSubj3 = 0.73), sug-
gesting the clusters represent truly underlying structure in the data
and are not artificially imposed by the clustering algorithm.
To evaluate if the clustering breaks at higher clustering orders

we generated parcellations at different k levels up to a maximum
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of k = 70 (Figs. S2–S7). Resulting functional topography at
higher k levels conserved hemispherical symmetry, as well as the
many functional organization principles described above.

Discussion
Using intensive within-subject averaging on data that combines
blocks of visual stimulation with a number/letter discrimination
task, we show that simple experimental perturbations modulate
the BOLD signal in the majority of the brain. Moreover, we
demonstrate that subtle interregional differences in these mod-
ulations contain sufficient information to functionally parcellate
the brain at many different scales.

Noise and Predicted BOLD Response Model Significantly Affect
Activation Area. The effects of averaging (8, 9) and increased
versatility of response models (5, 6) on activation area have been
studied separately before. Here, we evaluated their combined
effects. Although additional averaging tends to increase the ex-
tent of preexisting clusters, changes in predictive BOLD re-
sponse model produce novel activation sites. This finding is in
agreement with previous literature. Quantitatively, noise levels
have a higher effect on activation area. The maximum difference
in activation area between the SUS and UNC models across all
Nruns levels was 39% at PFDR < 0.05. Conversely, the minimum
difference between Nruns = 1 and 100 across all models was 65%.
Perhaps the most salient finding is not that activation extent

increased with decreasing noise and across models, but that it
reached levels close to 100% (i.e., 96%) suggesting the presence of
task-based BOLD signal modulations across the whole brain.
BOLDmeasurements are known to correlate with direct measures
of neuronal activity (27); still, their relationship is not fully un-
derstood (28). Moreover, as of today there is no consensus about
the neuronal interpretation of some nonconventional response
shapes (e.g., deactivations, transients at stimuli onset/offset); in
our case this accounts for ∼68% of the reported 96% (Table S1).
Nevertheless, both the 28% of voxels with conventional positive
sustained responses and the remaining 68%with unconventionally
shaped responses all correspond to nonrandom, task time-locked
responses that reached significance at PFDR < 0.05. Although it is
perhaps premature to claim a neuronal origin for all these
responses based solely on this result (see additional discussion
below), it can be stated that simple, yet attention-demanding, tasks
have the potential to significantly modulate on-going spontaneous
BOLD fluctuations across the whole brain, including regions
having no a priori relationship with the task.

Functional Organization of the Brain “in Action.” Both clustering
algorithms, when applied to the highest quality data, produced
anatomically and functionally meaningful parcellations that were
symmetrical across hemispheres, reproducible across subjects,
and robust against changes in a priori selection of k or clustering
methodology.
Cluster membership depended only on task-based BOLD

fluctuations, because the use of 500 trials virtually eliminated all
spontaneous BOLD fluctuations from the data. This finding
suggests that taking into account the interregional variability of
BOLD responses to sustained stimulation can provide important
information about the functional organization of the brain in
action, in a manner similar to that of on-going spontaneous
fluctuations during rest. Nevertheless, although similarities in
parcellation patterns across task-based and spontaneous fluctu-
ations do exist, substantial differences were also present. During
task performance we can observe “disconnection” of right and
left motor cortex, but at rest these two areas fluctuate in syn-
chrony (1). Furthermore, during task, right motor cortex and high
order visual areas (e.g., the medio-temporal area) were assigned
to the same cluster. In rest data, these regions are usually part of
well-differentiated networks. This finding suggests that although
the performance of a task does not completely disrupt the
functional organization of the brain at rest, it does affect con-
nectivity patterns and leads to specific rearrangements to enable
performance of the task. Disruption of resting-state connectivity

patterns have proven beneficial in advancing our understanding
of a series of cognitive disorders, such as Autism (4) or Attention
Deficit Disorder (3). We believe that disruption of normal con-
nectivity patterns associated with specific tasks (e.g., memory-
retrieval tasks or social-interaction tasks) might have similar
applications. Moreover, we believe a task-based approach might
be more sensitive to differences across populations because the
use of tasks related to the disorder might accentuate the dis-
rupted connectivity patterns underlying the symptoms.

Origin of Observed BOLD Signal Modulations. The use of BOLD
responses other than those positively sustained as indirect
markers of neuronal activity is still under debate. Both hemody-
namic and neuronal mechanisms have been proposed to explain
negatively sustained BOLD responses (29–31). Similarly, three
models have been postulated regarding the potential origin of
stimulus onset/offset responses. Two of these models are physi-
ologically based—either hemodynamic (21) or neuronal-based
(17)—and the third model is nonphysiological (22). Although our
results cannot be used to categorically discard or validate any of
these mechanisms, they constitute strong supporting evidence in
favor of a neuronal contribution for all these categories.
One strong argument in support of a neuronal origin for non-

sustained responses is spatial segregation (6, 24, 25). Our cluster
results fulfill this requirement, because different responses cluster
into well-delineated distinct regions. Moreover, clusters are not
simply aggregations of proximal voxels, but form networks of
distributed nodes with known functional homogeneity (e.g., the
right primary motor and medial supplementary motor cortex are
part of the same cluster). We believe these highly organized
functionally based associations could not be explained solely on
the basis of the vasculature tree or motion artifacts, such as those
shown by Mezer et al. (32). Similarly, because the clusters of
sustained negative responses cover entire, distinct brain regions,
they represent more than simply neural inhibition or vasocon-
striction adjacent to areas of neural excitation. Finally, if the
nonphysiological model of transient responses constitutes a valid
explanation, data with very low noise should be able to detect
transients in most voxels. Instead, we observe some regions with
only transients and others with no transients. Although it is pos-
sible for some transients to be a result of slight variations in the
relationship between cerebral blood flow, blood volume, and
metabolism, it is not clear how these variations would occur in
some regions, but not others, and how they could account for the
wide range of response shapes we observe across the brain.

Implications for Analysis/Interpretation of fMRI Data. The current
observation that BOLD responses are so widely spread across
the brain is unique, but it is not surprising when one considers
the success of multivariate methods at decoding complex stimuli,
even with regions showing no typical BOLD response to the task.
Moreover, from a neuroscience perspective, this result helps
narrow the gap between thousands of fMRI manuscripts showing
limited activation in response to tasks and cognition theories that
defend that cognition—understood as the process of “configur-
ing the way in which sensory information becomes linked to
adaptive responses and meaningful experiences”—can only re-
sult from the distributed collaboration of primary sensory, up-
stream and downstream unimodal, heteromodal, paralimbic, and
limbic regions (33). In this context, it can be argued that noise
reduction by a factor of six allowed us to switch from a regime
where activity detection relates primary to sensory processing to
a more sensitive regime, where activity detection includes also
cognitive processes with subtler BOLD signatures.
Hypothetically, if 30% of the noise in fMRI data could be

eliminated (e.g., by means of better cardiac and respiratory re-
moval techniques), the quantity of data required to achieve noise
levels equivalent to those reached here for Nruns = 100 could be
cut by an order of magnitude. This result would mean that
widespread task-locked activations could be detected for most
tasks; therefore, this raises a fundamental question in our in-
terpretation of fMRI data. To date, most BOLD experiments
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result in a sparse pattern of activation reflecting regions strongly
responding with subtle variants on the gamma-variate hemody-
namic-response function model (12). This finite number of
regions facilitates the interpretation of brain function and par-
ticularly effective network modeling. What is one to make then
of our current interpretation of BOLD data if this sparseness is
an artifact of noise levels and constrained predictive-response
models? We do not argue that whole-brain activation is critical
for the processing of a certain task. However, if a task-driven
BOLD response is triggered across the whole brain, how does
one differentiate between BOLD responses from regions critical
for handling the task, versus regions that are not? Relying on
high contrast-to-noise ratio, gamma-like hemodynamic responses
might not necessarily be the optimal solution. For example,
language tasks generate bilateral responses reliably in fMRI (34,
35); still, a unilateral lesion can cause aphasic symptoms (36, 37).
In that sense, one region is critical for the performance of the
task, but the BOLD response does not indicate which.
One first step toward addressing the above-mentioned issue is to

avoid the use of a simple dichotomy (e.g., active or inactive) when
classifying voxels with respect to a task. If, as our data suggests,
most intracranial imaged voxels should be assigned the active label
under optimal experimental conditions, then such a simple di-
chotomy is no longer informative. Conversely, classification of
voxels based on data-mining techniques, which exploit subtle

differences in temporal dynamics across voxels to allow greater-
order categorizations, has the potential to be more explanatory.
One limitation in many of these data-mining techniques is the
need to set a priori the number of output levels (e.g., clusters or
components) based on hypotheses about the underlying organi-
zation of the system under study. Our data suggest, in agreement
with previous resting-state studies (2, 38), that the brain “in action”
shows meaningful organizational principles at many different
scales, and no single number is a priori more correct than another.
Nevertheless, it can be expected that some parcellations will be
more informative than others. For example, although low k par-
cellations are more reliable across subjects, they do not neces-
sarily reflect regions of homogenous response to the task. Con-
versely, excessively high k parcellations may enforce artifactual
subdivisions. Algorithms that try to determine optimal parcella-
tions by maximizing some information criteria about the data (see
ref. 39 for additional details) may help address this question.
The diversity of responses observed in this work also poses in-

teresting questions for results from univariate analyses conducted
using the classic sustained-response model. In addition to un-
derestimation of area of activation, fitting an incomplete model
can be misleading because voxels with completely different shapes
can produce similar fit coefficients (Fig. S8). This finding can have
important implications for subtraction paradigms. Let us imagine
a study in which activity for task A (listen to intelligible sentences)
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is contrasted with task B (listen to unintelligible sentences) to find
the neuronal correlates of intelligibility. If a given voxel were to
respond in a positively sustained manner (Fig. S8A) to task A, but
in a transient manner (Fig. S8B) to task B, the contrast task A vs.
task B for that voxel could be nonsignificant, as Fig. S8C shows. By
only looking to the contrast between the fits, one could conclude
that such a voxel is not sensitive to speech intelligibility although
the original BOLD time series clearly show that activity in this
voxel highly depends on it.

Limitations of the Study. First, one limitation of this study is that
the spatial resolution used here can produce partial volume
effects at the edges of tissue compartments. These effects have
the potential to cause an overestimation of activation extent
because of the sparseness of the minimum unit of volume (e.g.,
in a significantly active voxel, maybe only 30% of the tissue is
active; still, the entire 100% is accounted for). Higher spatial
resolutions may produce smaller activation extents. Neverthe-
less, the fact that active tissue is distributed all over the brain—
beyond areas considered as directly related to the task—and that
elevated noise levels combined with generally overly simplified
predictive response models produce underestimations of acti-
vation extent, remains generally valid.
A second set of limitations derives from the potential bias in-

troduced by the selection of a specific clustering technique. To
partially overcome this issue, we show results from two different
methods. Although results across clustering algorithms do not
exactly match on a voxel-by-voxel basis, they are highly similar.
More importantly, all claims in this article are supported by
results from either approach. In other words, no claims that could
be supported only with results from a single method were made.

Finally, a third limitation of this study is the impossibility to
unquestionably claim that the effects reported here—namely the
presence of task time-locked BOLD responses in the majority of
the brain in response to a simple stimulation + letter/number
discrimination task—are truly neuronal in origin. Although an-
atomical correspondence and functional relevance of reported
clusters represent strong arguments in favor of a significant
neuronal contribution, conclusive evidence to support such
a claim would require simultaneous recording of BOLD signals
and neuronal events from the entire brain, with combined si-
multaneous EEG and fMRI recording being a plausible option.

Conclusions
We have demonstrated that the sparseness of activations in
fMRI maps can result from elevated noise levels or overly strict
predictive BOLD response models. When noise is sufficiently
low and the response model versatile enough, activity can be
detected with BOLD fMRI in the majority of the brain. Finally,
we have demonstrated that subtle interregional differences in
BOLD response shapes contain sufficient information to pro-
duce functional parcellations of the brain “in action.”

Methods
Three subjects were scanned on a General Electric 3TMRI scanner. All subjects
underwent 100 functional runs, which consisted of five blocks of stimulation
(20 s:flickering checkerboard at 8 Hz + letter/number discrimination task) and
40 s of rest. For the letter/number discrimination task, subjects responded
using a response box with their right hand. Data were analyzed with AFNI
(prepreprocessing, and statistical analysis), and MATLAB (clustering). Motion
and physiological noise fluctuations were removed during preprocessing.
Active voxels are defined as those where the model accounts for a significant
amount of variability in the data (F-stat) at PFDR < 0.05 or PBonf < 0.05.
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