Arterial Spin Labeling MRI Study of Age and Gender Effects on Brain Perfusion Hemodynamics

Yinan Liu, Xiaoping Zhu, David Feinberg, Matthias Guenther, Johannes Gregori, Michael W. Weiner, and Norbert Schuff

Normal aging is associated with diminished brain perfusion measured as cerebral blood flow (CBF), but previously it is difficult to accurately measure various aspects of perfusion hemodynamics including: bolus arrival times and delays through small arterioles, expressed as arterial-arteriole transit time. To study hemodynamics in greater detail, volumetric arterial spin labeling MRI with variable postlabeling delays was used together with a distributed, dual-compartment tracer model. The main goal was to determine how CBF and other perfusion hemodynamics vary with aging. Twenty cognitive normal female and 15 male subjects (age: 23–84 years old) were studied at 4 T. Arterial spin labeling measurements were performed in the posterior cingulate cortex, precuneus, and whole brain gray matter. CBF declined with advancing age (P < 0.001). Separately from variations in bolus arrival times, arterial-arteriole transit time increased with advancing age (P < 0.01). Finally, women had overall higher CBF values (P < 0.01) and shorter arterial-arteriole transit time (P < 0.01) than men, regardless of age. The findings imply that CBF and blood transit times are compromised in aging, and these changes together with differences between genders should be taken into account when studying brain perfusion.

Key words: arterial spin labeling; arterial-arteriole transit time; age; bolus arrival time; brain perfusion; gender

Many previous studies have shown that age affects brain physiology (1–3), using cerebral blood flow (CBF). CBF reflects the rate of delivery of nutrients to the brain. Furthermore, to characterize the hemodynamics of brain perfusion, a mean transit time for blood circulation based on the central volume principle has also been derived (4,5). However, absolute measurements of blood circulation remain complex, especially in studies of brain aging, because age-related morphological alterations of the brain vasculature, such as increased vessel tortuosity (6–8) potentially alter transit times and dispersion of blood flow tracers, can result in misleading information (9). Accurate measurements of blood circulation are therefore important for an unambiguous interpretation of CBF alterations in the aging brain.

Arterial spin labeling (ASL) MRI, which uses endogenous blood water as tracer for CBF, has excellent prerequisites for studying blood circulation in detail (10–19). Unlike contrast-enhanced MRI, which requires the injection of a “dye” as tracer or positron emission tomography (PET) and single photon computed tomography (20,21), which use radioactive tracers, ASL-MRI can be performed repeatedly, enabling the study of blood circulation at an unprecedented temporal resolution, e.g., by gradually incrementing the postlabeling delay time to sample the evolution of the ASL signal (19). Furthermore, several ASL studies attempted quantifying perfusion hemodynamics of the brain using mathematical models, in which regional variations in transit time of an ASL bolus, inhomogeneous dispersion, and finite exchange rates between tissue compartments were taken into account (22–25). Several ASL studies investigated variations of regional CBF in aging but most did not account for variable transit times of the water labels (15). More recently, further investigations focused on the optimization of ASL parameters to capture variations in transit times more accurately (13). However, most studies relied on bolus arrival time (BAT) alone as proxy for transit delays of the spin labels (11,12,18,26), which may lack sensitivity in capturing subtle alterations of the brain vasculature in aging and dementia, such as increased vessel tortuosity. Recently, we introduced a dual-compartment distributed perfusion model, in which variations in BAT are decomposed into transit delays through large arteries and delays through smaller arteries and arterioles, expressed as arterial-arteriole transit time (aaTT), before the spin labels reach the capillary bed and perfusion into brain tissue. In addition, volumetric ASL acquisition methods that offer sensitive and efficient mapping of brain perfusion simultaneously in three dimensions (17) helped avoid many of the time lag problems in two-dimensional acquisitions (10,13,14,16). In this study, we used the volumetric ASL acquisition together with the distributed perfusion model to investigate in greater detail how brain perfusion hemodynamics vary with advancing age.
Our primary goals were 2-fold. First, we aimed to replicate previous findings of regional reductions in CBF with advancing age by taking into account variations in bolus transit times, including BAT and aaTT. Second, we sought to determine the extent to which each transit time component changes characteristically with advancing age. On the basis of the previous reports of gender differences in hemodynamics (12,14,27), we also explored the extent to which transit delays differ between women and men. Finally, to determine the benefit of modeling aaTT, we tested the accuracy to predict age based on various parameters of brain hemodynamics.

MATERIALS AND METHODS

Subjects

Thirty-five cognitive normal subjects, who participated in various imaging studies of normal human brain and cognitive decline at our MRI center and who had dynamic ASL-MRI scans were selected for this study. The group consisted of 20 female and 15 male subjects, who were equally distributed across the age range from 23 to 84 years (mean age ± SD: 52.7 ± 18.7 years; median age 58 years). At least three subjects were represented in each decade of age, with the exception of the eighth decade, which included one subject only. To exclude cognitive impairment, the subjects received a battery of neurocognitive tests, including the mini-mental state exam for assessments of global cognitive functioning (28), and the CVLT II immediate and delayed recall trials for assessment of memory functions (29). None of the subjects had a clinical history of a psychiatric illness, epilepsy, diabetes, major heart disease, primary and secondary hypertension, head trauma, or alcoholism. In addition, a neuroradiologist visually inspected the MRI data for any incidental pathology (none detected) and scored the severity of white matter lesions (WMLs, not an exclusion criterion) in both periventricular and deep white matter regions on a four-level scale, following the Fazekas criteria (30). Finally, the apolipoprotein E (APOE) genotype was determined for each subject to control for the genetic polymorphism related to the risk for developing dementia. A summary of the demographic, neurocognitive, and genetic data is provided in Table 1. The study protocol was approved by the Committees of Human Research at the University of California in San Francisco and the VA Medical Center in San Francisco, and each subject gave signed informed consent before participating in the study.

MRI Acquisition

Imaging was performed on a 4T MRI system (Bruker Biospec, Germany), equipped with a single housing birdcage transmit and an eight-channel phased-array receive head coil. MRI included: (1) volumetric T_1-weighted magnetization-prepared rapid acquisition gradient echo images with repetition time/echo time/inversion time [T_1] = 2300/3.37/950 msec, flip angle = 7°, $1 \times 1 \times 1 \ mm^3$ resolution. Magnetization-prepared rapid acquisition gradient echo images were used for tissue segmentation and as anatomical reference. (2) Volumetric (three-dimen-

<table>
<thead>
<tr>
<th>Number of participants</th>
<th>Male</th>
<th>Female</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range (years)</td>
<td>26–76</td>
<td>23–84</td>
<td>0.2</td>
</tr>
<tr>
<td>Age mean ± SD (years)</td>
<td>47.8 ± 19.9</td>
<td>56.4 ± 18.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Mini-mental state exam</td>
<td>29.3 ± 1.1</td>
<td>29.5 ± 0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Immediate recall</td>
<td>15.9 ± 3.3</td>
<td>16.7 ± 4.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Delayed recall</td>
<td>14.1 ± 3.7</td>
<td>14.5 ± 4.4</td>
<td>0.6</td>
</tr>
<tr>
<td>WML severity</td>
<td>0.6 ± 1.0</td>
<td>1.3 ± 1.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>

aMini-mental state exam; scores range from 0 to 30 with higher scores indicating less cognitive impairment.

bMemory tests based on California Verbal Learning Test battery; score range from 0 to 60 with higher scores indicating more impairment.

cApolipoprotein E gene alleles; the frequency of each allele is listed; note, 2/2 and 2/4 were not present in this study population.

dWhite matter lesion based on a 0–4 rating scale following the Fazekas criteria.

Table 1 Demographics and Clinical Characteristics of the Study Population

ASL Model of Perfusion Dynamic

We briefly outline the model for the parameterization of perfusion dynamic based on the evolution of the ASL signal. Full details of the model can be found in Ref. 24. The essential features of the model are sketched in Fig. 1b. The model has two key features: First, the evolution of the ASL signal is decomposed into four phases with respect to the propagation of the labels through the cerebral vasculature and second, the spatial distribution of the labels is compartmented with considerations of a finite transfer rate for water crossing the blood brain barrier and a stepwise process toward a homogeneous water distribution in each compartment. The decomposition of the signal evolution into multiple phases has the
advantage that various transit periods, which are related to the different physical processes of the bolus propagation, can be taken into account. Specifically, the four phases of the ASL time course include: (1) the transit phase, termed BAT, in which the labeled blood water travels from the labeling plane until it reaches the voxel of interest; (2) the arterial phase, termed aaTT, during which the labeled blood water transits through arteries and arterioles before water exchange starts; (3) the arterial-capillary transitional phase, which is defined by the bolus duration (τ), during which only a fraction of the labeled blood water has entered the capillary bed for exchange; and (4) the capillary phase, in which all of the labeled blood water has entered the capillary bed for exchange. The magnitude of the ASL signal during each phase is diminished by longitudinal spin relaxation. In this study, exchange rate and spin relaxation were fixed.
Parameter Estimations of Dynamic ASL

We used the simplex minimization procedure to model the ASL signal (32). Discrete values were estimated for CBF, BAT, aaTT, and tau, while fixed values were used for the permeability surface-area product (PS = 340 mL blood/100 mL tissue/min (33)), tissue T_1 relaxation (1723 ms), and blood T_1 relaxation (1914 ms (34)) across voxels and subjects to reduce the degrees of freedom of the model and to stabilize the fits. Computations were performed voxel-by-voxel in Matlab (The MathWorks, Natick, MA), and results summarized as 3D parametric maps of CBF, BAT, and aaTT, as well as a map of residual standard fitting errors. To quantify absolute value of CBF in physiological units of ml blood/100 ml tissue/min, the equilibrium magnetization of blood was approximated as the mean CSF value of the first unlabelled and hence fully relaxed proton density weighted image (echo time = 23.2 ms) of the ASL series (35).

Image Segmentation and Region of Interest Selection

The ASL data were evaluated selectively for perfusion of gray matter (GM) and for specific brain structures known for diminished functions with advancing age, such as the posterior cingulate cortex (PCC) and the precuneus (PRE) (36,37). PCC and PRE were chosen because as they are part of default mode brain network and were previous demonstrated significant distinguish between Alzheimer’s disease and healthy aging (36,38,39). To achieve anatomical correspondence between structural and ASL-MRI data, first the 3D untagged ASL image sets were coregistered to the corresponding T_2-weighted images using affine transformations, followed by registering the T_2-weighted images to the corresponding high-resolution T_2-weighted images using high-dimensional warping algorithm in SPM2 (Statistical Parametric Mapping; the Wellcome Trust Center for Neuroimaging, UK) that provided the transformation parameters to ultimately register ASL-MRI to the T_2-weighted images. Furthermore, the T_2-weighted images were segmented into GM, white matter (WM), and cerebrospinal fluid (CSF) based on tissue probabilistic distributions using SPM2. A GM mask was generated (i.e., for voxels containing more than 80% GM) to extract selectively ASL data of GM. A threshold of 80% for GM has been used as cutoff in many previous studies (40–42), and we also selected this level based on our empirical experience with partial volume effect in ASL. The threshold did not result in significant differences in voxel numbers for ASL between young/old or male/female subjects. In addition, the brain atlas from the Montreal Neurological Institute (http://packages.bic.mni.mcgill.ca/tgz/) was used to extract ASL data selectively from PCC and PRE by reslicing and coregistering the Montreal Neurological Institute atlas to the ASL untagged images in the individual space of each subject. The mean values of CBF, BAT, and aaTT within each region of interest (global GM, PCC, and PRE) were then calculated based on the corresponding parametric ASL maps. The remaining analysis focuses on regional perfusion dynamics in global GM, PCC, and PRE.

Statistics

Linear regression was used to model relationships between the various parameterized ASL measures as dependent variables and age, gender, and age by gender interactions as factors. To determine the contribution of individual factors to the model, multiple models were constructed with and without inclusion of the specific factors and compared pairwise using F-tests. We accounted initially for severity of WMLs and APOE genotype in the model, because direct effects of these factors on CBF variations were previously reported (43,44) but found no significant contributions from these factors. We therefore ignored WMLs and APOE genotype as factors in the rest of the analysis to reduce the risk of over-fitting. The significance of regional differences between PCC and PRE in age-related CBF and transit time variations were determined by comparing the coefficient distributions from the corresponding regressions, supplemented by bootstrap and Wilcoxon tests (45,46).

To determine accuracy of age predictions based on various parameters of brain hemodynamics, we used the functional form of a relevance vector machine, a machine learning algorithm based on sparse Bayesian generalized linear modeling (47). The error between predicted and true age was then used as metric for ranking the predictive power of each ASL measure. Relevance vector machine was chosen, because the algorithm provides first parsimonious solutions for regressions and second generates probabilistic instead of discrete predictions. The procedure was augmented by bootstrapping, yielding distributions of errors from each ASL measure that allowed determining the significance in ranking the measures. Differences in accuracy were tested pairwise using t-tests with a threshold of $\alpha = 0.05$ for significance.

RESULTS

The summary of demographic and clinical data in Table 1 indicates that there were no significant differences between women and men in age range, cognitive status, severity of WMLs, and APOE genotype. A representative set of ASL data from a 65 years old subject is shown in Fig. 1a. The time course of the ASL signal from one voxel in the PCC region is shown in Fig. 1b with the corresponding four-phase decomposition superimposed. The average ASL signal and fitted curve in PCC and PRE are shown in Fig. 1c together with the standard deviation of the fitting error. The corresponding parametric maps of CBF, BAT, and aaTT as well as a map of the root mean square fitting errors before the data were masked by 80% GM are shown in Fig. 2.

Aging and Gender Effects

Estimations of age and gender effects on the various measures of perfusion dynamic are summarized in Table 2, separately for each parameter, i.e., CBF, BAT, and aaTT as well as by regions of interest. The regression coefficients and standard errors are listed, representing baseline value (i.e., intercept), change per decade of age and the difference between the genders of each perfusion
measure in physical units. The statistical significance of variations is also listed. With respect to aging, CBF of global GM declined by about 7.7% per decade of age from the CBF intercept value of 48 mL/100 mL/min compared with 7.8% decline per decade for PCC and 8.8% decline per decade for PRE. aaTT of global GM increased by about 2.1% per decade of age from the intercept value of 0.38 s compared with 8.0% increase per decade for PCC while aaTT of the PRE did not change significantly. BAT increased in all three regions significantly between 12 and 21% per decade of age from the intercept value of 0.26 s. Accounting for severity of WMLs as well as for APOE genotype did not significantly alter the effects of age on the values of perfusion dynamic.

With respect to gender, we found significant differences across the perfusion measures and regions but no significant interactions between advancing age and gender, implying gender effects are independent of age. Specifically, women had generally higher CBF values than men by about 11.7% for global GM, by 14.9% for the PCC, and by 13.9% for the PRE, relative to the respective intercept values (listed in Table 2). Woman had shorter
Listed are the coefficients of the linear regressions ± standard errors. $|t_{\text{age}}|$ and $|t_{\text{sex}}|$ indicate the t-scores of the factors age and sex in the linear regressions; Significance code: <0.001 ****; 0.001 ****; 0.01 ***: 0.05 **; 0.1 *. GM: gray matter; PCC: posterior cingulate cortex; PRE: precuneus; CBF: cerebral blood flow; aaTT: arterial-arteriole transit time; BAT: bolus arrival time.

DISCUSSION

We have three major findings: First, we found significant reduction of CBF in the posterior cingulate, precuneus, and global GM region with advancing age, consistent with many other aging studies of brain perfusion using various imaging techniques, including PET and single photon computed tomography. Importantly, the influence of age on CBF remained significant even after accounting for variations in bolus transit delays. The results establish more firmly than before that CBF is diminished due to aging even after accounting for major confounding effects from vascular alterations. Second, a new finding is the prolongation in aaTT with advancing age, globally in GM as well as regionally in the posterior cingulate cortex. Moreover, measurements of the aaTT improved predictions of age-related decline in blood volume compared with measurements based on BAT alone. The prominent role of aaTT in predicting perfusion changes related to aging is consistent with histological findings of systematic morphological changes in arterioles with advanced aging, such as increased tortuosity (6–8), which would increase path length and thus prolong transit time. Third, we found gender—in addition to aging—also affected perfusion with women presenting overall higher CBF values and shorter aaTT than men, although age had overall a stronger effect on perfusion than gender. Taken together, the findings suggest that CBF, as well as bolus transits are compromised with advancing age and the age effect together with differences between genders should be taken into account when studying brain perfusion.

Our finding of CBF reductions with advancing age are consistent with many other imaging studies, using a variety of measurements techniques, including PET, single photon computed tomography (2,20,21,48), and ASL-MRI (14,15). Still, some studies reported no significant...
correlations between CBF and aging (49,50). Interestingly, the rate of CBF decline with aging in our study is similar in magnitude to rates reported by O15-PET studies (2). In particular, the relatively high rate in CBF decline of the posterior cingulate compared with the decline of the precuneus and global GM is also consistent with previous reports using PET (48), although other studies found even high rates of CBF decline with aging in other brain regions, such as the anterior cingulate (51). It is noteworthy that most PET and single photon computed tomography studies did not account for partial volume effects and some studies reported that the aging-related CBF reductions disappeared after partial volume corrections (50). In contrast, we still found significant CBF reductions after limiting the analysis to predominantly GM regions to circumvent partial volume problems. The result implies that the CBF reduction cannot simply be interpreted as an artifact of structural alterations in the aging brain. In absence of major structural confounds, our findings could potentially help to better understand the energy metabolism of the aging brain (7).

A new finding is the prolongation in aaTT with advancing age, indicating that variations in blood circulation can accompany aging. In particular, the finding that the prediction of age improved with information from aaTT is intriguing and suggests that the decomposition of the postlabeling delay into aaTT provides potentially useful information for aging which cannot be discerned from BAT alone. Similarly, ASL techniques designed to eliminate or compensate for transit effects

FIG. 3. Scatter plots of perfusion dynamic variables for global gray matter (GM) versus age, separately for women (triangle) and men (circle). Parameter estimates of perfusion based on linear regressions (men:solid line; women:dot-dash line) are indicated in the plots together with the corresponding standardized fitting errors (dotted lines). Plots show separately results for a) cerebral blood flow (CBF), b) arterial-arteriole transit time (aaTT), and c) bolus arrival time (BAT).
might miss important information about the microvascular change, which causes variation in transit time and blood circulation due to aging or dementia (52,53). Recently, another ASL study also reported variations in transit time due to through large and small vessels, implying that a decomposition of the transit time benefits the characterization of brain perfusion (10). Our finding that aaTT plays an important role in predicting perfusion changes related to aging is consistent with histological findings of systematic morphological changes in arteries and arterioles with advancing age that includes increased vessel tortuosity, including large carotid vessels and arterioles (7,8). Arterioles, which are typically less than 100 μm in diameter and thus markedly smaller than even small arteries (400 μm) but still larger than capillaries (54,55), present usually the greatest resistance to blood flow (56) and also complete the change from pulsatile to steady flow when blood enters the capillaries (57). In addition to increased tortuosity of arterioles, histological studies also found increased rarefaction (58) and increased damage of arteriole walls, potentially prolonging the transit time of blood as well (6–8). Our findings of an increased aaTT might therefore reflect compromised structure and morphology of brain vasculature with aging, impacting cerebral blood supply.

An interesting and unexpected observation is that aaTT of the PCC increased markedly with advancing age compared with the one of PRE, despite similar aaTT baseline values of both brain structures at young age.
The PCC and PRE are among the highest perfused brain regions and also belong to the so-called default functional brain network (37,59), but both regions are also targets of high deposition of amyloid β-peptide (Aβ), the main component of amyloid plaques in the brain associated with Alzheimer’s disease (36,60). Whether the difference in aaTT between the PCC and PRE is also an indication that CBF is more susceptible to aging effects than bolus transit delays. Importantly, aaTT ranked significantly higher than BAT in terms of accuracy despite the fact that BAT is easier to estimate computationally than aaTT. The result implies that the inclusion of aaTT in the model improved the characterization of hemodynamic perfusion. On the other hand, BAT might be more influenced by the experimental design than aaTT, because major contributions to BAT come from large vessels with turbulent blood flow over long distances, causing variable bolus dispersions. The four-phase model (24), providing an estimation of aaTT, is therefore preferable over simpler models especially for studies in which a distinction between perfusion in large and small vessels is important.

Several limitations of our study ought to be mentioned: Our sample size is relatively small for an aging study, and therefore, generalization of our results should be done with caution. Moreover, we assumed CBF and aging are linearly related, which may be a substantial simplification. Furthermore, we did not collect CSF biomarkers of AD, such as Aβ1-42 or tau proteins to exclude the possibility that some of the elders in this population had preclinical AD (67). Hence, some variations in perfusion dynamic could be due to neurodegeneration and not aging. Another complication is that we did not directly control for biological confounds of CBF variations, such as hypertension, diabetes, and caffeine intake at the time of study, although we excluded subjects with a clinical history of hypertension and diabetes. It is therefore possible that some variations in CBF measures are not related to age but induced by peripheral conditions. Another limitation is that we kept the permeability surface (PS) parameter fixed (an index of blood brain barrier permeability) and did not account for variations across subjects, although PS is thought to increase with aging (for a review see: (68)) but difficult to measure reliably using ASL-MRI (69). We also did not determine age-related variations in the apparent T1 relaxation of the ASL signal due to prohibitively long scan times, although recent MRI studies imply a monotone T1 increase of GM tissue with older age (70). T1 of blood serum, on the other hand, seems to be more stable across the life span (71). As effects on the ASL signal from increased blood brain barrier permeability and increased T1 of GM together can compensate each other, the impact of these variations on estimations of aaTT and CBF are difficult to predict. Our findings should therefore be interpreted with caution in absence of blood brain barrier and brain T1 measurements. Finally, partial gray and white matter volume may have mimicked reductions in perfusion, despite our restriction to measuring perfusion only in voxels with at least 80% GM.

In summary, our findings suggest that age and to some extend also gender influence not only CBF but also induce variations in blood transit times and thus all aspects of perfusion dynamic need to be considered when interpreting CBF decline in aging.

REFERENCES